1983

SYNTHESES OF THE A RING ANALOGS OF TRIPTOLIDE AND TRIPDIOLIDE 1)

Takashi TOKOROYAMA,* Akihiro KONDO, and Yoichiro EZAKI[†]
Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558

[†]Arakawa Chemical Industries, Joto-ku, Osaka 536

The synthesis of an A ring analog of tripdiolide as well as revised procedures for the synthesis of a triptolide analog (iso-dehydroabietenolide) from dehydroabietic acid <u>via</u> the previously reported intermediate is described.

Triptolide $\underline{1}$ and tripdiolide $\underline{2}$ are potent antileukemic agents of plant origin, $\underline{2}$) of which the latter is scheduled for preclinical pharmacology. $\underline{3}$) In a study to synthesize an A ring model $\underline{3}$ of triptolide $\underline{1}$ from dehydroabietic acid, $\underline{4}$) our synthetic product, later found to be $\underline{5}$, was erroneously assigned as $\underline{3}$. The model compound $\underline{3}$ was recently synthesized and designated as isodehydroabietenolide by van Tamelen. We would like to communicate here two independent corrected procedures for the derivation of $\underline{3}$ from the previously reported intermediate $\underline{7}$ and $\underline{9}$, $\underline{8}$ 0 and also the synthesis of an A ring analog $\underline{4}$ of tripdiolide $\underline{2}$.

The first route for the synthesis of $\underline{3}$ started from lithium enolate derived from the methyl ester $\underline{9}$, which on oxidation with MoO₅·Py·HMPA complex afforded the α -hydroxylated product $\underline{11}$ (40% yield with 48% recovery of a mixture of $\underline{9}$ and the conjugated ester $\underline{10}$). The reaction of $\underline{11}$ with thionyl chloride in ether gave the

primary chloride 12 in 71% yield, which in turn was treated either by aq. NaOH-EtOH or by LiI-DMF under reflux to produce the desired lactone 3 in yields of 55 and 45% respectively. The identification of the product as 3 was performed by the comparison of the spectral data (IR, ¹H and ¹³C NMR) ¹⁰⁾ with those reported. ⁶⁾ The reaction of the enolate of the ester 9 with dibenzoylperoxide furnished albeit in low yield (10%) a \gamma-benzoyloxylated product 13 which on hydrolysis with aq. NaOH-EtOH yielded the lactone 3. The second method was based on the application of photooxygenation to the enol dienes derived from the unsaturated aldehyde 7. The compound 7 was first converted to enol acetate 1411) by successive treatment with t-BuOK and acetyl chloride. When a solution of 14 in a mixture of acetone and MeOH (1:4) containing Rose Bengal was irradiated by mercury fluorescent lamp under bubbling of oxygen, two products were obtained. The major product (41%) was the diene aldehyde 15, IR(CC1₄): 2830, 2700, 1700 cm⁻¹; ¹H NMR: 5.10, 6.07 (each 1H, m, 19-H), 6.59 (1H, m, 2-H), 9.47 (1H, s, 18-H), produced by an ene reaction and the other (18%) was endoperoxide 16, IR(CCl₄): 1752, 1220 cm⁻¹; 1H NMR: 2.15 (3H, s, OAc), 4.24, 4.68 (each 1H, AB q, J = 17 Hz, 19-H), 6.19 (1H, s, 18-H). Treatment of 16 with Et₃N afforded the target lactone 3 quantitatively. 12) In an attempt to change the formation ratio of the ene product and the endoperoxide, the photooxygenation was investigated also on t-butyldimethylsilyl enol ether 17, 13) which was prepared from $\underline{7}$ by successive treatment with \underline{t} -BuOK-THF and \underline{t} -BuMe₂SiCl. The photooxygenation of 17 in the same way as above afforded the ene product 15 (52%) and an endoperoxide 18 (25%), the ratio of both products essentially remaining unchanged. Interestingly when the separation of the reaction mixture was performed carefully (silica gel TLC at 0°), a hydroperoxide 19, the precursor of 15, could be isolated as a mixture of epimers (crystals with mp 194-195°). 14 Treatment of 19 with Na $_2$ SO $_3$ -H $_2$ O-THF at room temperature gave 15 quantitatively. Incidentally the transformations realized in the second method may have some implication for the biosynthesis of A ring functionality in triptolides.

Next the synthesis of tripdiolide analog $\underline{4}$ was investigated utilizing the diene aldehyde $\underline{15}$. Oxidation of $\underline{15}$ with hypobromite (NBS-H₂O-DMSO, r.t.) afforded 1,4-products $\underline{20}$ and $\underline{21}$ in a ratio of 3:1 (50 \sim 60% yield). The stereochemistry of the hydroxyl groups in both compounds was assigned on the basis of the differences in the chemical shifts of angular methyl signals (δ 1.23 and 1.08 respectively) and the signal shape of the C-2 protons (triplet with J = 2 Hz <u>versus</u> multiplet with W_K = 22 Hz) in the 1 H NMR spectra. When $\underline{20}$ was oxidized with sodium chlor-

R.
$$\frac{11}{H}$$
 Me O_2C $\frac{11}{H}$

$$\frac{6}{7} R = H$$

$$\frac{7}{7} R = CHO$$

$$\frac{8}{9} R = CO_{2}H$$

$$\frac{10}{9} R = CO_{2}Me, \Delta^{3:4}$$

$$\frac{12}{13} \quad X = C1$$

$$13 \quad X = OCOPh$$

$$\frac{14}{17} \quad R = Ac$$

$$\frac{17}{17} \quad R = Si \quad Me_2 Bu_t$$

$$\frac{15}{19} \quad R = R' = 0$$

$$\frac{19}{R'} \quad R = OSi \quad Me_2 Bu_t$$

$$R' = OOH$$

$$\frac{16}{18} \quad R = Ac$$

$$\frac{18}{18} \quad R = SiMe_2Bu_t$$

$$\frac{20}{21}$$
 R = OH, R' = H
 $\frac{21}{21}$ R = H, R' = OH

$$\frac{23}{24} \quad R = CHO$$

$$\frac{24}{24} \quad R = CO_2Me$$

ite, 15) lactonization of the resulting bromo acid occurred spontaneously to give the desired tripdiolide analog $\underline{4}$, mp 194-196°, m/z 312; IR(CCl₄): 3450, 1760, 1675 cm⁻¹; 1 H NMR: 1.21 (3H, s, 20-H), 4.72 (1H, m, W_{χ} = 9 Hz, 2-H), 4.88 (2H, br s, 19-H); 13 C NMR: 60.5 (C-2), 70.8 (C-19), 126.9 (C-3), 165.3 (C-4), 173.8 (C-18). The oxidation of $\underline{21}$ in the same way furnished the epimeric lactone $\underline{22}$, 16) which was also obtained from $\underline{15}$ by a sequence of reactions: (1) epoxydation with 30% H₂O₂-NaOH-Et₂O-MeOH (1:1) giving α -epoxy aldehyde $\underline{23}$, (2) oxidation of $\underline{23}$ with Ag₂O-

NaOH-MeOH followed by methylation (CH_2N_2) giving methyl ester $\underline{24}$ and (3) treatment of 24 with trimethylsilyl triflate.

References

- 1) Part XVI of a series of publications titled 'Synthetic Studies on Terpenic Compounds.' Part XV: T. Tokoroyama, H. Koike, K. Hirotsu, and Y. Ezaki, Tetrahedron, 38, 2559 (1982).
- S. M. Kupchan, W. A. Court, R. G. Dailey, jr., C. J. Gilmore, and R. F. Bryan, J. Am. Chem. Soc., 94, 7194 (1972).
- 3) J. M. Cassady and M. Suffness, "Anticancer Agents Based on Natural Product Models," ed by J. M. Cassady and J. D. Douros, Academic Press, New York (1980).
- 4) H. Koike and T. Tokoroyama, Chem. Lett., 1979, 333,
- 5) The ¹H NMR and IR spectra of our product were different from those⁶⁾ of <u>3</u> in the comparison made by Professor van Tamelen for which we are grateful. Scruting of the spectral data including ¹³C NMR with reference to those of triptolides²⁾ and stemolide⁷⁾ indicated that the compound in question should be 5.
- 6) E. E. van Tamelen, E. G. Taylor, T. M. Leiden, and A. F. Kreft III, J. Am. Chem. Soc., <u>101</u>, 7423 (1981).
- 7) P. S. Manchand and J. F. Blount, Tetrahedron Lett., 1976, 2489.
- 8) The compound $\underline{7}$ was synthesized⁴⁾ from the dehydroabietene $\underline{6}^{9)}$ in 27% overall yield by five steps and its oxidation with Jones reagent provided $\underline{8}$, which on methylation gave $\underline{9}$.
- 9) J. W. Huffman and R. F. Stockel, J. Org. Chem., 28, 506 (1963).
- 10) IR(CCl₄): 1768, 1680 cm⁻¹; 1 H NMR: 1.05 (3H, s, 20-H), 1.24 (6H, d, J = 7 Hz, 16- and 17-H), 4.68 (2H, m, 19-H); 13 C NMR: 50.6 (C-19), 125.1 (C-3), 163.1 (C-4), 174.3 (C-18). The 1 H NMR spectrum conforms with that kindly sent from Professor van Tamelen.
- 11) The compound represents a single geometrical isomer as seen from its ¹H NMR spectrum.
- 12) The photooxygenation of $\underline{14}$ conducted in pyridine solution gave directly $\underline{3}$ in 20% yield along with the ene product $\underline{15}$ (46% yield).
- 13) The compound was obtained as an inseparable mixture of E- and Z-dienes in a ratio of 13:4 as seen from its ¹H NMR spectrum: 0.06, 0.17 (6H, s, Me₂Si;), 0.93, 0.97 (9H, s, <u>t</u>-BuSi;), 4.59, 5.02 (1H, m, 19-H), 4.90, 5.26 (1H, m, 19-H), 6.36, 6.13 (1H, m, 18-H).
- 14) H NMR: 5.03 (1H, br s, 19-H), 5.30, 5.39 (1H, br s, 19-H), 5.75, 5.97 (1H, br s, 18-H), 6.23 (1H, m, 2-H), 8.25 (1H, s, OOH, shifted to higher field on warming).
- 15) B. O. Lindgren and T. Nilsson, Acta Chim. Scand., 27, 888 (1973).
- 16) IR(CCl₄): 3460, 1760, 1675, 1260 cm⁻¹; 1 H NMR: 1.08 (3H, s, 20-H), 4.83 (1H, m, W_{χ}= ca 20 Hz), 4.83 (2H, br s, H-18); 13 C NMR: 62.5 (C-2), 70.5 (C-19), 126.6 (C-3), 164.7 (C-4), 173.4 (C-18).